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[1] An assessment quantifying the impact of urbanization on temperature trends from the
U.S. Historical Climatology Network (USHCN) is described. Stations were first classified
as urban and nonurban (rural) using four different proxy measures of urbanity. Trends from
the two station types were then compared using a pairing method that controls for
differences in instrument type and via spatial gridding to account for the uneven
distribution of stations. The comparisons reveal systematic differences between the raw
(unadjusted) urban and rural temperature trends throughout the USHCN period of record
according to all four urban classifications. According to these classifications, urbanization
accounts for 14–21% of the rise in unadjusted minimum temperatures since 1895 and 6–9%
since 1960. The USHCN version 2 homogenization process effectively removes this urban
signal such that it becomes insignificant during the last 50–80 years. In contrast, prior to 1930,
only about half of the urban signal is removed. Accordingly, the National Aeronautics and
Space Administration Goddard Institute for Space Studies urban-correction procedure has
essentially no impact on USHCN version 2 trends since 1930, but effectively removes the
residual urban-rural temperature trend differences for years before 1930 according to all four
urban proxy classifications. Finally, an evaluation of the homogenization of USHCN
temperature series using subsets of rural-only and urban-only reference series from the larger
U.S. Cooperative Observer (Coop) Network suggests that the composition of Coop stations
surrounding USHCN stations is sufficiently “rural” to limit the aliasing of urban heat island
signals onto USHCN version 2 temperature trends during homogenization.
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1. Introduction

[2] Urbanization has long been recognized as having the
potential to impact near-surface temperature readings by
altering the sensible and latent heat fluxes in affected areas
[e.g.,Mitchell, 1953; Oke, 1982; Arnfield, 2003]. The concen-
tration of high thermal mass impermeable surfaces in urban-
ized regions commonly leads to higher surface temperatures
compared to those in less developed or rural areas, especially
at night [Oke, 1982; Parker, 2010]. To mitigate the potential
for an urban bias in temperature records used for climate mon-
itoring, stations that comprise the U.S. Historical Climatology
Network (USHCN) were selected to be largely from rural or

small town locations [Quinlan et al., 1987; Menne et al.,
2009]. Still, station locations tend to be correlated with
inhabited areas. Relative to the percentage of total land area
that is built up, “urban” observation stations are likely overrep-
resented in general, even in networks like the USHCN.
[3] Given the potential for urban biases, a number of studies

have been undertaken to quantify the impact of the “urban heat
island” (UHI) signal on land surface air temperature trends
globally [e.g., Peterson et al. 1999; Parker, 2006; Jones
et al., 2008; Hansen et al., 2010] and regionally within the
United States [e.g., Kukla et al., 1986; Karl et al., 1988;Gallo
et al., 1999;Gallo and Owen, 2002; Peterson, 2003; Peterson
and Owen, 2005]. Unfortunately, quantifying the impact of
urbanization on temperature trends faces multiple confound-
ing factors. For example, an instrument originally installed in
an urban environment may well have warmer absolute tem-
peratures than one in a nearby rural area, all else being equal,
but will not necessarily show a higher trend over time unless
the composition of the city or the microclimate around the
sensor changes in such a way as to cause the city observations
to further diverge from temperatures at nearby rural locations
[Jones and Lister, 2010], or the nature of urban land use leads
to an amplifying of warm events whose frequencymay change
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with time [McCarthy et al., 2010]. It follows that urban heat
island effects will lead to larger temperature trends compared
to rural areas only if UHI-related factors cause incremental
increases over rural temperatures during the period over which
the trend is calculated [Boehm, 1998]. Moreover, cooling
biases can be introduced into the temperature record when sta-
tions move from city centers to more rural areas on the urban
periphery. This may have occurred, for example, during
the period between about 1940 and 1960 when stations
were moved from urban centers to newly constructed airports
[Hansen et al., 2001] and, in the case of the USHCN, airports,
waste water treatment plants, and other locations that lie out-
side the urban core [National Climatic Data Center, 2012].
Conversely, an instrument that is constructed in a relatively
rural area that becomes more urban over time may exhibit a
warming bias, and stations in small towns are not necessarily
free of urban influences.
[4] To further complicate matters, changes associated with

urbanization may have impacts that affect both the meso-
scale (102–104m) and the microscale (100–102m) signals.
Small station moves (e.g., closer to nearby parking lots/
buildings or to an area that favors cold air drainage) as well
as local changes such as the growth of or removal of trees
near the sensor may overwhelm any background UHI signal
at the mesoscale [Boehm, 1998]. Notably, when stations are
located in park-like settings within a city, the microclimate
of the park can be isolated from the urban heat island “bub-
ble” of surrounding built-up areas [Spronken-Smith and Oke,
1998; Peterson, 2003]. Furthermore, changes in observation
practice such as time of observation and instrument changes
may lead to artifacts (inhomogeneities) in the data record
that complicate the quantification of urban heat island sig-
nals [Peterson, 2003], especially if these changes are corre-
lated with urban form.
[5] Here, an analysis is described whose aim is to quantify

the potential UHI contribution to U.S. temperature trends by
more fully controlling for external factors that impact the
trends but are otherwise unrelated to urbanization. A range
of estimates for the UHI contribution to average U.S. tem-
perature trends is provided by making use of four separate
ways to differentiate urban and rural station environments
to help assess uncertainty associated with identifying urban
environments. The impact of data homogenization on the
UHI signal is also evaluated. Homogenization is necessary
to account for shifts in the station-based data caused by
historical changes in the circumstances behind surface tem-
perature measurement (e.g., changes in instrument type, sta-
tion relocations) rather than by true changes in the climate.
The artifacts caused by these kinds of changes have large,
systematic impacts on U.S. temperature trends [Menne
et al., 2009; Williams et al., 2012a]. Consequently, homog-
enized data sets are essential for evaluating temperature
changes from the observational record [Venema et al., 2012;
Lawrimore et al., 2011; Hansen et al., 2010; Vose et al.,
2012]. Benchmarking the approach to homogenizing the U.
S. monthly temperature data has essentially reaffirmed previ-
ous assessments regarding the nature and impact of these arti-
facts on USHCN temperature trends [Williams et al., 2012a].
[6] Homogenization of the USHCN monthly version 2

temperature data does not specifically target changes associ-
ated with urbanization. Instead, the procedure used involves
identifying and accounting for shifts in the monthly

temperature series that appear to be unique to a specific sta-
tion, the assumption being that a spatially isolated and sus-
tained shift in a station series is caused by factors unrelated
to background climate variations [Menne et al., 2010].
Given that UHI-related changes may manifest as highly lo-
calized shifts or creeping changes, the focus in this analysis
is to determine to what extent homogenization is removing
apparent, local urban influences on the USHCN temperature
record. Because homogenization may be removing local
shifts caused by land use changes at nonurban stations, the
same methodology used here could be applied to evaluating
the impact of other types of land use changes.
[7] The paper is organized as follows. Some additional

background and motivation for the study are provided in
section 2. The data sets and methods are discussed in section
3. Results are presented in section 4. Conclusions are pro-
vided in section 5.

2. Background and Motivation

[8] Motivation for assessing urban influences on tempera-
ture trends comes largely from interest in quantifying the
contribution of urbanization in overall temperature trends
relative to other factors. To that end, measures of ambient
population [Kukla et al., 1986] and satellite-derived night-
lights [Gallo et al., 1999] have been used to differentiate
urban and rural environments. Using these measures,
monthly temperatures from U.S. weather stations designated
as urban have been found to have decadal trends as much as
0.12�C/decade higher than those classified as rural [Kukla
et al., 1986]. Because differences of this magnitude repre-
sent a non-negligible fraction of the likely background cli-
mate change signal, Karl et al. [1988] developed a specific
adjustment to control for the apparent contribution of the
urban heat island signal in USHCN temperature data. After
adjusting for shifts in the data associated with time of obser-
vation and other changes documented in station histories, the
Karl et al. [1988] evaluation suggested that an additional
urban bias was present in the USHCN average temperature
of about 0.06�C during the period from 1900 to 1984. Essen-
tially all of the bias was associated with minimum tempera-
tures in urban areas, which were about 0.13�C higher on
average than in rural areas; maximum temperatures appeared
to have little urban bias.
[9] The Karl et al. [1988] UHI correction was used to pro-

duce the USHCN (version 1) fully adjusted USHCN
monthly temperature data until the release of version 2
[Menne et al., 2009]. As in version 1, the version 2 release
includes bias adjustments for time of observation and other
station history changes, but version 2 also includes adjust-
ments for changes (inhomogeneities) that are not documen-
ted in digital station histories (roughly 50% of all changes).
Providing adjustments for both documented and undocu-
mented station changes reduced the overall magnitude of
minimum temperature trends from USHCN stations more
than the fully adjusted version 1 temperatures even though
version 1 contained the additional Karl et al. [1988] UHI
adjustment. The reason for this may be that the more com-
prehensive homogenization in version 2 removes the impact
of incremental, but previously unidentified step changes
associated with mesoscale and microscale urbanization fac-
tors, or that the signal arising from local UHI trend changes
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are sometimes aliased (i.e., inadvertently accounted for;
DeGaetano, 2006) onto estimates of the more comprehen-
sive version 2 step-type adjustments [Menne et al., 2009].
In any case, the development of a method for identifying
and adjusting undocumented shifts appeared to account for
more than the signal attributed to urban effects on minimum
temperatures by Karl et al. [1988]. Thus, no separate UHI-
specific correction was provided in USHCN version 2.
[10] Another reason that the Karl et al. [1988] corrections

were not used in version 2 is that they are monotonic functions
of city population; that is, these adjustments always reduced
minimum temperature trends based on the total population
of the city. In contrast, Hansen et al. [1999, 2001, 2010] have
used a nightlights-based method that forces urban (and “peri-
urban”) station trends to conform to surrounding rural trends
in the National Aeronautics and Space Administration
(NASA) Goddard Institute for Space Studies (GISS) surface
temperature analysis. In the process, the Hansen et al.
approach actually increases the trend for about 40% of urban
stations. The fact that so many urban trends are larger after
the urban adjustment likely reflects the degree to which the
confounding factors discussed above can mitigate or other-
wise obscure potential urban heat island signals.
[11] For the U.S. data contribution to the NASA GISS

analysis, Hansen et al. [2001, 2010] use the USHCN data
that have been adjusted by the National Oceanic and Atmo-
spheric Administration/National Climatic Data Center
(NOAA/NCDC) for time of observation and station history
changes, but apply their own UHI adjustment. The GISS ur-
ban adjustment reduced the otherwise adjusted USHCN ver-
sion 1 temperature trends by an additional 0.15�C/century,
more than twice than that of the Karl et al. [1988] method
[Hansen et al., 2001], even though the NASA GISS UHI
corrections are not monotonic. When one uses the USHCN
version 2 adjusted data, the impact of the GISS UHI correc-
tion is on the order of 0.07�C/century [Hansen et al., 2010].
[12] The differential impacts of these approaches to asses-

sing and correcting for the UHI are indicative of the need to
better frame the uncertainty of urban influences on tempera-
ture trends in the United States. As noted more recently by
Peterson [2003] and Peterson and Owen [2005], this
requires controlling for the many confounding issues like
differences in instrumentation and other observation prac-
tices that may blur the urban signal. Whereas Peterson
[2003] and Peterson and Owen [2005] focused primarily
on a snapshot of mean urban-rural differences, here we build
on their work by looking specifically at the time evolution of
urban-rural differences. We use four rather than two proxy
measures of urbanity and quantify the impact of data
homogenization on the apparent UHI signal, focusing in par-
ticular on the potential magnitude of residual UHI contami-
nation and whether there is evidence that homogenization
transfers UHI bias from urban to nonurban station series.

3. Methods

[13] The Conterminous United States (CONUS) has some
of the most dense, publicly available digital surface temper-
ature data in the world, with over 7000 Cooperative
Observer (Coop) Network Program stations reporting daily
maximum and minimum temperatures for at least 10 of the
network’s 120-plus year history. A subset of 1218 stations,

generally those with long records, composes the USHCN
[Menne et al., 2009]. This highly sampled surface tempera-
ture field allows for the comparison of subsets of station data
in a manner that avoids inherent biases due to changes in
spatial coverage. The Coop Program also now maintains
accurate geolocational information on the present location
of observing stations, with coordinates expressed in degrees,
minutes, and seconds (roughly 30m accuracy) available for
most stations. This also allows for the accurate indexing of
current Coop station locations against high-resolution geore-
ferenced data sets that are useful for delineating urban and
nonurban areas.
[14] Because there is not an obvious mesoscale metric that

determines the impact of urban form on temperature in all
situations, we examined four different measures of urbanity
that are available as georeferenced data sets: satellite-derived
nightlights, urban boundary delineations, percent of imperme-
able surfaces, and historical population growth during the pe-
riod for which high-resolution data are available (1930–2000).
These four measures, which represent different snapshots of
urban boundaries, were used to classify a station as urban or
nonurban by retrieving the pixel values coincident with each
station’s coordinates.When the proxy for urban form involved
continuous measurements (all but urban boundaries), a cutoff
point to divide stations between urban and rural was chosen
based on urban designations present in the literature (e.g.,
Hansen et al. [2010] for nightlights and Elvidge et al. [2007]
for impermeable surface area). Each of these proxies is
described in section 3.1 below.

3.1. Data Sets Used to Classify Station Types

3.1.1. Satellite Nightlights
[15] Satellite-derived brightness values associated with the

Coop Network stations (including the USHCN) were taken
from the Global Radiance Calibrated Nighttime Lights data
set produced by the Earth Observation Group using instru-
ments flown on Defense Meteorological Satellite Program
(DMSP) satellites. We used the data from the F16 satellite
recorded between 28 November 2005 and 24 December
2006. The values we associate with each station are linearly
interpolated from the four neighbor pixels in the image
file and are converted to radiance by multiplying by
1.51586� 10�10, giving a result in W sr�1 cm�2 [Baugh
et al., 2010]. To determine a radiance value threshold for
designating urban stations that is consistent with the
32 mW/m2/sr/mm used in Hansen et al. [2010] (who used
data from Imhoff et al. [1997]), we divided radiance values
by the optical bandwidth of the F16 satellite (0.7 mm), result-
ing in a cutoff of 14.78 (i.e., 32� 0.7� 1.51586) as the
equivalent value for the 2005–2006 satellite nightlight
series. This is rounded to the nearest integer (15) for the
purpose of assigning a cutoff to separate urban from nonur-
ban pixels.

3.1.2. Urban Boundaries (GRUMP)
[16] For the urban boundaries urbanity proxy, we use

binary designations from the Global Rural-Urban Mapping
Project (GRUMP), produced by the Center for International
Earth Science Information Network (CIESIN) of the Earth
Institute at Columbia University [2004]. GRUMP designa-
tions are based on the identification of urban areas using
national census data (including the National Imagery and
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Mapping Agency database of populated places). GRUMP
purports to identify cities and towns with populations
exceeding 1000 residents. Urban boundaries surrounding
identified cities and towns are estimated based on DMSP
Operational Linescan System (OLS) data from 1994 to
1995 as well as data from the Digital Chart of the World’s
Populated Places (DCW) [Balk et al., 2004].

3.1.3. Impermeable Surfaces
[17] The Impervious Surface Area (ISA) for pixels coin-

cident with Coop stations is taken from the Global Distri-
bution and Density of Constructed Impervious Surfaces
data set produced by the Earth Observation Group. The
1 km resolution data used for this study were derived from
30m ISA data generated by the U.S. Geological Survey as
described in Elvidge et al. [2007]. The data product has a
nominal date of 2000/2001 and represents the percentage
of the surface area that comprised man-made structures
such as roads, buildings, and parking lots. Station latitude
and longitude were used to reference the data set and
extract the percentage of impervious surface in the
surrounding 1 km. To determine the urban/nonurban classi-
fication, a cutoff of 10% was employed. As noted by
Schueler [1994] and Arnold and Gibbons [1996], the
impacts to hydrology typically begin above this figure.
ISA values below 10% were classified as rural. This
approach is consistent with, although somewhat more con-
servative than, the recent work of Potere et al. [2009], who
used a figure of 20% for detecting urban extent.
3.1.4. Population Growth
[18] For the population growth proxy, we utilized gridded

1 km population estimates for the CONUS, 1930–2000. This
data set was also used by Peterson and Owen [2005] and
Peterson [2003] to classify USHCN stations into urban and
nonurban categories. The gridded population was created by
using two U.S. Census Bureau data sets: the 2000 U.S. Census
Bureau 1 km2 population density grid for CONUS [National
Geophysical Data Center/NESDIS/NOAA, 2002] and tabular
U.S. Census county data [U.S. Census Bureau, 2002]. Urban
sites were defined as those characterized by a 1930–2000 pop-
ulation growth of ≥10 people/km2, which yields similar-sized
numbers of urban and nonurban stations, as shown in Table 1.
While there is no available justification in the literature for this
or any specific 1930–2000 population growth cutoff as a
proxy for urbanization, this value was chosen to be reasonably
conservative and to produce an urban/rural division generally
in line with the other urbanity proxies. As Table 1 indicates,
the GRUMP, Nightlights, and Population Growth urbanity
proxies result in a relatively even distribution of stations in
the rural and urban categories, while the ISA proxy identifies
the majority of stations as rural. Information on retrieving
these data sets is provided as auxiliary material1.

3.2. Calculation of Rural and Urban Temperature
Trend Differences

[19] Urban-rural temperature differences were calculated
by subsetting the USHCN station data according to the
urban/nonurban station classifications described above (for
simplicity, nonurban stations are referred to as rural). To
examine the possible UHI signal present in the USHCN tem-
perature record, we use two different but complementary
methods to compare urban and rural station temperatures:
station pairing and spatial gridding.
3.2.1. Station Pairing Method
[20] The station pairing method creates pairs of nearby

urban and nonurban (rural) stations as classified by the four ur-
ban proxy measures. Pairs were created by forming all possi-
ble permutations of urban and rural stations, excluding those
that were more than 161 km (100miles) apart, that had differ-
ing or unknown sensor equipment types (e.g., Maximum
Minimum Temperature Sensors [MMTS] versus Liquid in
Glass Thermometers in Cotton Region Shelters [CRS]) or
cases in which both stations currently have MMTS sensors
but installation dates differ by more than 5 years. This pairing
method yields a set of proximate urban/rural station pairs for
each classification method that should be relatively unaffected
by bias introduced through sensor-type transitions [Quayle
et al., 1991;Menne et al., 2009]. Time series of monthly max-
imum and minimum temperature anomalies relative to a
1961–1990 baseline were calculated for all urban and rural
series. Difference series for each urban and rural station pair-
ings were then created for the full period of the USHCN
version 2 records (1895 to present).
[21] More specifically, the approach in the station pairing

method was to take all permutations of urban and rural sta-
tions and produce a set containing unique pairs but non-
unique occurrences of individual urban and rural station
series (Table 2). For example, a specific urban station would
create distinct pairs with all surrounding rural stations within
100 km with the same instrumentation type. To avoid over-
weighting regions with large numbers of adjacent urban
and rural stations (and thus disproportionately more possible
station pair combinations), we weight the urban-rural differ-
ences by the inverse of the number of station pairs associated
with each unique urban station. The mean urban-rural differ-
ences for unique urban stations are averaged for each month
to obtain a best estimate of the underlying urban-rural tem-
perature differences.
[22] The trend and confidence intervals for two periods,

1895–2010 and 1960–2010, are calculated from the station
pair data using a weighted regression with clustered standard
errors, with unique urban stations used for both the weighting
and clustering. Standard errors are clustered by unique urban
station because station pairs contain non-unique occurrences
of individual urban and rural stations (e.g., a single urban sta-
tion might be paired with four different rural stations), and

Table 1. Number of USHCN Stations Classified by Urbanity for
Each Urbanity Proxya

Proxy Name Urban Boundaries Nightlights ISA Population Growth

Rural stations 608 594 857 685
Urban stations 610 624 357 533

aFour stations could not be classified using the ISA urbanity proxy due to
data set limitations.

Table 2. Number of Total Urban/Rural Station Pairs and Unique
Urban Stations by Urbanity Proxy

Proxy Name
Urban

Boundaries Nightlights ISA Population Growth

Total station pairs 1684 1809 1446 1392
Unique urban stations 437 470 271 390
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treating each station pair as independent would result in erro-
neously narrow confidence intervals. As mentioned previ-
ously, each urban-rural pair is given a weight in the regression
proportionate to the inverse of the number of station pairs that
share the same urban station.
[23] The station pairing method allows us to control for both

spatial coverage and sensor type, avoiding potential complica-
tions introduced by differing locations of urban and rural sta-
tions as well as urban-correlated bias in the transition to
MMTS sensors in the 1980s. The results will not necessarily
be as representative of the entire CONUS temperature field
as those produced by spatial gridding, however, as station
pairing does not explicitly weight based on spatial coverage.

3.2.2. Spatial Gridding Method
[24] The spatial gridding method is used to create separate

gridded fields for the CONUS using the subsets of urban and
rural station series (and separately for maximum and mini-
mum temperatures) as classified by each urban proxy
measure. Station temperatures are converted to anomalies
relative to a 1961–1990 baseline period, and station series
that fall within 2.5� latitude� 3.5� longitude grid cells are
averaged together; then each grid cell average is cosine
weighted to produce a CONUS average time series. The
CONUS average urban and rural station series are then
differenced. Trends and confidence intervals for the urban-
rural differences during the 1895–2010 and 1960–2010
periods are calculated by regressing against the date using
an AR(1) model to account for autocorrelation.
[25] The gridding method described above is commonly

used by NOAA/NCDC to produce spatially averaged time
series for climate monitoring. In addition to this method,
results using the gridding method described in Menne et al.
[2009, 2010] are provided as supplementary information.

3.3. USHCN Version 2 Monthly Temperature Data

[26] Urban-rural differences for mean monthly maximum
and minimum temperatures were calculated using four differ-
ent versions of the USHCN version 2 monthly temperature
data. The four versions were used to help quantify the magni-
tude of the UHI in the underlying raw (unhomogenized) data,
to isolate the impact of data homogenization on the UHI signal
and to evaluate impact of the GISS UHI correction when
applied as an addition correction over and above homogeniza-
tion. The data set versions include

1 time of observation-only adjusted data (called TOB);
2 adjusted version 2 (TOB+pairwise homogenization

adjustments; v2);
3 adjusted version 2 data produced by running the pairwise

homogenization algorithm using (a) neighboring series
classified only as rural (v2-rural neigh) and (b) neighbor-
ing series classified only as urban (v2-urban neigh);

4 adjusted version 2 data with the GISS UHI correction
(TOB+ pairwise homogenization +GISS UHI adjust-
ments; v2 + step2).

Each of these variants is described below.
3.3.1. Time of Observation Bias-Adjusted Data (TOB)
[27] The TOB station series are the raw monthly tempera-

ture data adjusted only for the time-of-observation bias

[Schaal and Dale, 1977; Karl et al., 1986]. The time of
observation bias is an artifact of the starting/ending hour
for the 24 h interval over which the maximum and minimum
temperature occurred. This bias is unrelated to any physical
artifacts associated with urbanization and only leads to
biased trends when the time of observation changes through
time. However, such changes are likely more prevalent at
rural stations, which are commonly run by volunteer obser-
vers who have been systematically transitioning from after-
noon to morning observation times [Menne et al., 2009].
In order to remove the time of observation bias as a
confounding factor in assessing UHI impacts, we use data
adjusted according the method described by Karl et al.
[1986] and Vose et al. [2003]. Results using completely
unadjusted (raw) data are provided as auxiliary material
using the Menne et al. [2009, 2010] gridding method.

3.3.2. Data Adjusted by the Pairwise Homogenization
Algorithm (USHCN Version 2)
[28] Running the TOB-adjusted data through the Pairwise

Homogenization Algorithm (PHA) [Menne and Williams,
2009] produces the USHCN version 2 fully adjusted data
[Menne et al., 2009]. The PHA works by identifying and
removing abrupt shifts in monthly temperature series that
appear to be unique to a particular station. The shifts can
be caused by small station moves, by a change in instrumen-
tation, or possibly by local impacts of any kind of land use
change. The shifts are identified via automated pairwise
comparisons of monthly temperature series in which the
relative homogeneity of a given station’s series is evaluated
by looking for breaks in differences series formed between
the target station and a number of highly correlated neigh-
boring series. The adjustments are based on the median shift
magnitude calculated from pairwise temperature differences
between the target and neighbors before and after the shift.
For any particular target adjustment, the neighbor pool is
drawn from those that appear to be homogeneous according
to the PHA for a minimum period (24months) before and
after the target shift. The PHA does not specifically target
urban station changes. Instead, the algorithm targets all shifts
that appear to be unique to a particular station. Removing
these local signals at all stations (rural and urban alike) pro-
duces temperature trend fields that more accurately reflect
the general background climate signal than the raw data.
[29] For version 2, USHCN monthly temperatures were

compared to sets of highly correlated neighboring series within
the larger Coop Network. Details regarding the mechanics of
the PHA and evaluations of the algorithm’s efficiency can be
found in Menne and Williams [2009] and Williams et al.
[2012a]. Version 2.0 of the adjusted monthly data was released
in 2008 based on PHA version “52d.” Urban-rural differences
in version 2.0 adjusted data are discussed below. An evaluation
of the UHI signal in a new version of the data set (termed
version 2.5) is provided as auxiliary material using the
Menne et al. [2009, 2010] gridding method. Version 2.5 fully
homogenized data are produced by algorithm version “52i,”
which contains some bug fixes relative to version 52d
[Williams et al., 2012b].
[30] To evaluate the potential for UHI bias to be trans-

ferred from urban Coop stations that may be used as neigh-
bors in the homogenization of USHCN station records, we
also ran the USHCN station series through the PHA using
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only Coop stations that were classified as rural in one case
and using only stations classified as urban in the other
according to the same set of four urban proxies.

3.3.3. Version 2 Homogenized Data With the Additional
NASA/GISS “GISTEMP” UHI Correction
[31] Finally, we apply the GISS surface temperature

(GISTEMP) urban heat island adjustment (described by
Hansen et al. [2010]) to the version 2.0 series to see how it
addresses any remaining urban-related signal from the homog-
enized monthly temperature records. The GISTEMP UHI
correction adjusts the trend of stations classified as urban or
periurban to match the trend of a distance-weighted composite
record made from nearby rural stations. An urban station is ad-
justed only if there are at least three nearby rural stations with
values that overlap at least two thirds of the urban station’s
period of record. Periods and urban stations that fail the rural
station requirement are excluded from the GISS analysis.
Rural stations are ideally selected to be within 500 km of the
urban station, but in some cases could be as far as 1000 km
away to meet the selection requirement. Note that in
performing this adjustment, only rural stations from USHCN
have been used. This contrasts with the usual GISTEMP anal-
ysis, which will use any suitable rural stations in GHCN, pos-
sibly including stations not in USHCN (such as in Canada and
Mexico). Given the spatial density of stations in USHCN, we
expect any differences in adjustment to be minimal.
[32] The scheme for identifying stations as urban has

changed in the history of the GISTEMP analysis [Hansen
et al., 1999, 2001, 2010]; here we use nighttime radiances
from the DMSP-calibrated radiance product described earlier.
The analysis was carried out using the ccc-gistemp software
supplied by the Climate Code Foundation [Barnes and Jones,

2011]. The resulting version 2.0 series with the GISTEMP
UHI correction should be essentially the same as the USHCN
data used in NASA’s GISTemp product, albeit with a slightly
more up-to-date data set used for determining nighttime
brightness and separate application of the step 2 (UHI correc-
tion) process to average monthly minimum and maximum
data rather than applying it to the mean monthly data only.
[33] This analysis described above produces estimates of

urban-rural differences for each month from 1895 to 2010
for mean monthly minimum and maximum temperatures
for the TOB, v2, v2 + Step 2, and v2-rural neigh/v2-urban
neigh variants for each of the four urbanity proxies via both
station pairing and spatial gridding methods, resulting in 64
different distinct urban-rural differences for each month.

4. Results

4.1. Unhomogenized (TOB-Adjusted) Data

[34] Figure 1, which summarizes the urban minus rural
(urban-rural) trend differences for all data set versions, indi-
cates that the USHCN unhomogenized (TOB-only adjusted)
data contain significant urban warming signals (p< 0.05 for
linear trend fit) over the period from 1895 to present in both
the minimum and maximum temperatures according to
nearly all urban classification and comparison methods
(the exception being GRUMP and nightlights maximum
temperatures evaluated via spatial gridding).
[35] As expected, the urban signal is larger in minimum

temperatures than in maximum temperatures. Urban-rural
difference trends in minimum temperature range between
0.05�C and 0.5�C per century in minimum temperatures for
the 1895–2010 period for the unhomogenized data depending
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Figure 1. The 1895–2010 trends and 95% confidence intervals in urban-rural differences by proxy type.
Circles represent TOB-adjusted data, triangles represent version 2.0 data adjusted using rural neighbors
only (v2-rural neigh), diamonds represent version 2.0 homogenized data (v2), and squares represent
version 2.0 homogenized data with additional corrections using GISS’s step 2 method (step 2).
Solid shapes show results from the station pair method, and hollow shapes show results from the spatial
gridding method.
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on the classification and comparison method (e.g., station
pairing or spatial gridding).
[36] As shown in Figure 2, there is also evidence of a signif-

icant urban signal in the unhomogenized data during the past
50 years, with urban-rural difference trends of between 0.2�C
and 0.6�C per century across all urbanity proxies for the period
1960–2010. This large urban warming signal does not appear
to be a result of any correlation between instrument changes
and urban form because it occurs with a similar magnitude
in both the station pairing method (which controls for instru-
ment type) and the spatial gridding method (which does not).
[37] For minimum temperatures, the urban warming signal

over both century and half-century time frames is larger in
the more restrictive urban classification (ISA) that contains
relatively few urban stations, and the signal is smaller in
the classifications (GRUMP, Nightlights, and Population
Growth) that contain a more even split between urban and
rural designations. The station-pairing method often shows
significantly larger urban warming than the spatial gridding
method; however, the pairing method does not account for
the potential biases related to the spatial distribution of the
station pairs. As shown in Figure 3, the divergences between
station pairing and spatial gridding methods are particularly
pronounced prior to 1950, which may be indicative of a
larger geographic bias to the station pairs during that period.
In contrast, both methods produce similar results for periods
after 1950.
[38] As Figure S1 shows, the rural-urban differences are

even larger in the raw minimum temperatures than in the
TOB-adjusted data, especially for the period since 1950
when time-of-observation changes were prevalent. How-
ever, as mentioned above, this difference is not likely driven

by any physical phenomena related to UHI. Instead, it prob-
ably reflects a higher frequency of time of observation
changes at nonurban stations.
[39] Maximum temperature urban-minus-rural trends in

the unhomogenized (TOB) data are also significantly larger
than zero over the period 1895–2010 for most urban classi-
fications, but are smaller than the trends in minimum
temperature urban-rural differences (Figure 4). They also
show considerably less variation across urbanity proxy,
with urban warming trends of around 0.08–0.22�C per cen-
tury for the station pairing method and �0.04–0.2�C per
century for the spatial gridding method. However, maxi-
mum temperature urban-rural difference trends are larger
over the period 1960–2010, particularly in the GRUMP
and Population Growth proxies, where they exceed mini-
mum urban minus rural trends. In this case, there is also a
greater divergence between analysis methods, with the sta-
tion-pairing method showing much larger urban warming
than the spatial gridding method, which, again, probably
reflects a spatial bias caused by the non-uniform distribu-
tion of station pairs.
[40] By comparing the trends of rural stations to those of

all USHCN stations, we can use the spatial gridding method
to get an estimate of the extent to which overall CONUS
minimum temperature trends over the past century may have
been driven by the urban warming signal (Table S1). By this
estimate, the unhomogenized minimum temperature data
from rural USHCN stations yield trends that are between
14% and 21% smaller on average over the 1895–2010
period than the trends from the full USHCN network. This
difference decreases to between about 6% and 9% during
the last 50 years.

-.
02

0
.0

2
.0

4
.0

6
.0

8
.1

m
in

 te
m

ps
-.

02
0

.0
2

.0
4

.0
6

.0
8

.1
m

ax
 te

m
ps

GRUMP Nightlights ISA Pop Growth

D
eg

re
es

 C
 P

er
 D

ec
ad

e

Trends in urban-rural differences, 1960-2010

Figure 2. The 1960–2010 trends and 95% confidence intervals in urban-rural differences by proxy type.
Circles represent TOB-adjusted data, triangles represent version 2.0 data adjusted using rural neighbors
only (v2-rural neigh), diamonds represent version 2.0 homogenized data (v2), and squares represent ver-
sion 2.0 homogenized data with additional corrections using GISS’s step 2 method (step 2). Solid shapes
show results from the station pair method, and hollow shapes show results from the spatial gridding
method.
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4.2. Homogenized Version 2 Data (v2)

[41] The PHA significantly reduces the difference between
urban and rural minimum temperature trends according to all
analysis methods and station classifications. This is particu-
larly true over the 1960–2010 period, for which the vast
majority of the urbanity proxies and methods indicate no

significant urban warming in the minimum data. Maximum
temperatures are a bit more mixed, although most proxies
and methods show no significant urban warming in the
maximum data over the period. As shown in Figure 5,
there is still a small but significant minimum urban
warming prior to 1960 in all urbanity proxies except for
Population Growth. The station-pairing method suggests

GRUMP Nightlights

Pop GrowthISA

Figure 3. Running 5 year mean of urban and rural differences for time of observation-adjusted minimum
USHCN station data from 1895 to 2010, using both station pair (solid line) and spatial gridding (dashed
line) methods for GRUMP, Nightlight, ISA (10%), and Population Growth urbanity proxies.

GRUMP Nightlights

Pop GrowthISA

Figure 4. Running 5 year mean of urban and rural differences for time of observation-adjusted maxi-
mum USHCN station data from 1895 to 2010, using both station pair (solid line) and spatial gridding
(dashed line) methods for GRUMP, Nightlight, ISA (10%), and Population Growth urbanity proxies.
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some residual urban signal before 1960, but this residual
signal is small in the spatial gridding method for all proxies
after 1930.
[42] The effect of homogenization is most pronounced in

the more restrictive urbanity proxies like ISA that contain
relatively few urban stations and show larger urban warming
trends prior to homogenization. The divergences between
urban and rural temperatures that remain prior to 1930 even
after homogenization are probably caused in part by the

combination or poorer metadata for that time period and fewer
coop station records that can be used as neighbors.
[43] Urban-rural differences in maximum temperatures over

the century time frame are not reduced as much as minimum
temperatures in the version 2.0 homogenization, as shown in
Figure 6, but are smaller to begin with in the unhomogenized
data (Figure 1).
[44] Comparing homogenized rural HCN stations to all

HCN stations, we find that rural stations show between 0%

GRUMP Nightlights

Pop GrowthISA

Figure 5. Running 5 year mean of urban and rural differences for v2 homogenized minimum tempera-
ture USHCN station data from 1895 to 2010, using both station-pair (solid line) and spatial gridding
(dashed line) methods for GRUMP, Nightlight, ISA (10%), and Population Growth urbanity proxies.

GRUMP Nightlights

Pop GrowthISA

Figure 6. Running 5 year mean of urban and rural differences for v2 homogenized maximum USHCN
station data from 1895 to 2010, using both station-pair (solid line) and spatial gridding (dashed line) meth-
ods for GRUMP, Nightlight, ISA (10%), and Population Growth urbanity proxies.
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and 10% (0 to 14%) less warming in minimum (maximum)
temperature data in the version 2.0 data over the 1895–2010
period, and a slight but not significantly different from zero
reduction in warming over the 1960–2010 period (Table
S1). Thus residual urban signals not removed by data ho-
mogenization appear to be significant only for the period
prior to 1960 and effectively only prior to about 1930. In
summary, pairwise homogenization effectively removes the
urban signal present in minimum temperature data from
the last 50–80 years and reduces it by around 50% or more
for the period prior to 1930 (as can be seen when comparing
Figures 3 and 5).

4.3. Homogenized Version 2 Data With Added
GISTEMP Correction (v2 + Step 2)

[45] As reported in Hansen et al. [2010], applying the
GISTEMP step 2 UHI correction to the USHCN version
2 data has the impact of reducing the mean CONUS
temperature trend from 0.73�C to 0.65�C over the period
1900–2009. As shown in Figure S1, this reduction appears
to result almost entirely from trend adjustments in the data
for years prior to 1930. After 1930, the version 2.0 (52d)
and version 2.5 (52i) data are not significantly impacted
by the step 2 adjustment. Moreover, this trend reduction
is required only because of an urban signal in the early min-
imum temperature data, which get reduced by about
0.0113�C/decade by the step 2 adjustment. The impact on
maximum temperature is only 0.00288�C/decade. The aver-
age of these impacts is equivalent to the impact reported by
Hansen et al. [2010]. As shown in Figures 7 and 8, the GISS
step 2 adjustment is effectively removing the residual urban
signal in both minimum and maximum temperatures across
all proxies without any significant overadjustment, even for
the most restrictive definitions of urbanity.

4.4. Homogenized Version 2 Data Using Only Coop
Neighbors Classified as Rural (v2-Rural Neigh)

[46] In all of the urbanity proxies and analysis methods, the
differences between urban and rural station minimum
temperature trends are smaller in the homogenized data than
in the unhomogenized data, which suggests that homogeniza-
tion can remove much and perhaps nearly all (since 1930) of
the urban signal without requiring a specific UHI correction.
However, the trends in rural station minimum temperatures
are slightly higher in the homogenized minimum temperature
data than in the TOB-only adjusted data. One possible reason
for this is that the PHA is appropriately removing inhomoge-
neities caused by station moves or other changes to rural sta-
tions that have had a net negative impact on the CONUS aver-
age bias (e.g., many stations now classified as rural were less
rural in the past because they moved from city centers to air-
ports or wastewater treatment plants). Another possibility is
that homogenization is causing nearby UHI-affected stations
to “correct” some rural station series in a way that transfers
some of the urban warming bias to the temperature records
from rural stations. In such a case, a comparison of the homog-
enized data between rural and urban stations would then show
a decreased difference between the two by removing the ap-
pearance of an urbanization bias without actually removing
the bias itself.
[47] To help determine the relative merits of these two

explanations, the PHA was run separately allowing only
rural-classified and only urban-classified Coop stations to be
used as neighbors in calculating the PHA corrections for
USHCN stations. In Figure 9, the spatially averaged U.S.
minimum temperature anomalies for rural stations are
shown for the four different data sets: the unhomogenized
(TOB-adjusted only); the version 2 (all-Coop-adjusted; v2)
data; the homogenized data set adjusted using only coop

GRUMP Nightlights

Pop GrowthISA

Figure 7. Running 5 year mean of urban and rural differences for step 2 minimum USHCN station data
from 1895 to 2010, using both station-pair (solid line) and spatial gridding (dashed line) methods for
GRUMP, Nightlight, ISA (10%), and Population Growth urbanity proxies.
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stations classified as rural; and the homogenized data set
adjusted using only urban coop stations.
[48] The large difference in the trends between the urban-

only adjusted and the rural-only adjusted data sets suggests
that when urban Coop station series are used exclusively as
reference series for the USHCN, some of their urban-related

biases can be transferred to USHCN station series during
homogenization. However, the fact that the homogenized all-
Coop-adjusted minimum temperatures are much closer to the
rural-station-only adjustments than the urban-only adjustments
suggests that the bleeding effect from the ISA-classified urban
stations is likely small in the USHCN version 2 data set. This

GRUMP Nightlights

Pop GrowthISA

Figure 8. Running 5 year mean of urban and rural differences for step 2 maximum USHCN station data
from 1895 to 2010, using both station-pair (solid line) and spatial gridding (dashed line) methods for
GRUMP, Nightlight, ISA (10%), and Population Growth urbanity proxies.
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is presumably because there are a sufficient number of rural sta-
tions available for use as reference neighbors in the Coop net-
work to allow for the identification and removal of UHI-related
impacts on the USHCN temperature series. Furthermore, as the
ISA classification shows the largest urban-rural difference in the
TOB data, it is likely that greater differences between rural-
station-only-adjusted and all-coop-adjusted series using stric-
ter rural definitions result from fewer identified breakpoints
because of less network coverage, and not UHI-related alias-
ing. Nevertheless, it is instructive to further examine the
rural-only and urban-only adjustments to assess the conse-
quences of using these two subsets of stations as neighbors
in the PHA.
[49] Figure S2 shows the cumulative impact of the adjust-

ments using the rural-only and urban-only stations as neigh-
bors to the USHCN. In this example, the impermeable surface
extent was used to classify the stations. The cumulative
impacts are shown separately for adjustments that are common
between the two runs (i.e., adjustments that the PHA identified
for the same stations and dates) versus those that are unique to
the two separate urban-only and rural-only reference series
runs. In the case of both the common and unique adjustments,
the urban-only neighbor PHA run produces adjustments that
are systematically larger (more positive) than the rural-only
neighbor run. The magnitude of the resultant systematic bias
for the adjustments common to both algorithm versions is
shown in black. The reason for the systematic differences is
probably that UHI trends or undetected positive step changes
pervasive in the urban-only set of neighboring station series
are being aliased onto the estimates of the necessary adjust-
ments at USHCN stations. This aliasing from undetected
urban biases becomes much more likely when all or most
neighbors are characterized by such systematic errors.
[50] Figure S3 provides a similar comparison of the rural-

only neighbor PHA run and the all-Coop (v2) neighbor run.
In this case, the adjustments that are common to both the
rural-only and the all-Coop neighbor runs have cumulative
impacts that are nearly identical. This is evidence that, in
most cases, the Coop neighbors that surround USHCN sta-
tions are sufficiently “rural” to prevent a transfer of unde-
tected urban bias from the neighbors to the USHCN station
series during the homogenization procedure. In the case of
the adjustments that are unique to the separate runs, the
cumulative impacts suggest that the less dense rural-only
neighbors are missing some of the negative biases that
occurred during the 1930–1950 period, which highlights
the disadvantage of using a less dense station network. In
fact, the all-Coop neighbor v2 data set has about 30% more
adjustments than the rural-only neighbor PHA run produces.
Results using the other three station classification
approaches are similar and are provided as Figures S3–S8.

5. Conclusions

[51] According to all four proxy measures used to identify
station environments that are currently urban, there is consis-
tent evidence that urban stations have a systematic bias
relative to rural stations throughout the USHCN period of
record. This bias has led to an apparent urban warming signal
in the unhomogenized data that accounts for approximately
14–21% of the total rise in USHCN minimum temperatures
averaged over the CONUS for the period since 1895 and

6–9% of the rise over the past 50 years. Homogenization of
the monthly temperature data via NCDC’s PHA removes the
majority of this apparent urban bias, especially over the last
50–80 years. Moreover, results from the PHA using the full
set of Coop station series as reference series and using only
those series from stations currently classified as rural are
broadly consistent, which provides strong evidence that the
reduction of the urban warming signal by homogenization is
a consequence of the real elimination of an urban warming
bias present in the raw data rather than a consequence of
simply forcing agreement between urban and rural station
trends through a spreading of the urban signal to series from
nearby stations.
[52] As noted in section 1, one of the challenges in quantify-

ing the UHI signal in land surface air temperature records is
that changes affecting urban stations can occur at both the mi-
croscale and the mesoscale. Changes at the microscale (e.g.,
small station moves, growth of a tree) are not necessarily of
interest in evaluations of the UHI signal because they are
highly localized and may have no relevance to the broader
land use changes associated with urbanization that can affect
the mesoscale temperature signal. For this reason, microscale
changes can be reasonably included in the list of inhomogene-
ities that should be corrected for via homogenization (along
with instrument changes and time of observation changes).
In contrast, it may be desirable to preserve changes in the
mesoscale signal because these changes encompass a broader
footprint and are arguably more likely to be related to larger
scale land use changes. Unfortunately, it may not be possible
to distinguish (at least automatically) changes occurring at
the microscale from changes at the mesoscale, especially if
only one station record is available to sample the mesoscale
signal. Whatever the cause, when any station series exhibits
a sustained change relative to highly correlated surrounding
stations, the change is likely to be identified by the PHA as
uniquely local, and its impact on that station’s temperature
trend will be removed with a bias adjustment. This happens
whether the USHCN station is from a rural or urban environ-
ment, which means that the same challenge that exists for
identifying UHI impacts also exists for identifying the impacts
of other types of (nonurban) land use changes.
[53] Nevertheless, the pairing of urban and rural stations in

a manner that controls for instrument type and time of obser-
vation changes reveals larger trends at urban stations, which
is consistent with the understanding that land use changes
associated with urbanization lead to larger historic tempera-
ture trends at urban stations. However, that this larger trend
signal is effectively removed through homogenization sug-
gests that the urban environments characterized by larger
trends do not have large spatial scales that allow them to
be sampled by a number of Coop stations (or that the urban
temperature signal is heterogeneous) and thus the local ur-
ban signal is being effectively removed via homogenization.
[54] Because homogenization is largely successful in re-

moving urban bias in the USHCN temperature data, it appears
that only about 5% of the period-of-record USHCN version 2
minimum temperature trends across the CONUS can be attrib-
uted to local urban influences and, furthermore, that most of
this contribution is coming from data for years prior to 1930.
This residual urban bias for the earlier years in the record
may be a consequence of the reduced station density of the
Coop network in the early part of the 20th century, which
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limits the number of pairs available for detecting inhomogene-
ities, some of which may be related to urbanization.
[55] The NASAGISS’s (GISTEMP) step 2 nightlight-based

UHI adjustments effectively remove the remaining urban-rural
differences during this early period, suggesting that the addi-
tional UHI-specific adjustment is achieving the goal of forcing
agreement between urban and rural temperature trends.
Nevertheless, the recently released USHCN version 2.5 data
(homogenized with the PHA algorithm version “52i,” as
shown in Figure S1) improves the pre-1930 period consider-
ably vis-à-vis version 2.0 (except in the case of GRUMP),
which may also mean that homogenization procedures may
be able to more fully account for urban-related biases in the
future, at least in areas with sufficient station density. In any
case, at present, the net effect of urban-correlated biases on
the version 2.5 adjusted data is evidently small, accounting
for less than 5% of the trend since 1895 (and between 0%
and 2% since 1960). While it would probably be worthwhile
to further characterize the uncertainty in UHI-related warming
in data sets like the USHCN (e.g., by exploring a range of
cutoffs for classifying a station as urban with the various prox-
ies or by quantifying more site-specific aspects of a station’s
environment), UHI does not appear to represent a significant
contributing factor in the homogenized CONUS-average max-
imum and minimum temperature signal over the past 50–
80 years.
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