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1. Climate Model, Radiative Forcing and Ensemble Generation 
The UVic Earth System Climate Model (version 2.8 with parameters as described in 
detail in (28)) includes a three-dimensional ocean general circulation model, a dynamic-
thermodynamic sea ice model, a simple one-layer energy-moisture balance model of the 
atmosphere as well as land-surface and dynamic terrestrial vegetation components at a 
resolution of 1.8°×3.6° with 19 vertical levels in the ocean. Since vegetation is allowed to 
respond dynamically to changes in climate and CO2 concentrations, it is treated as an 
internal interactive feedback, rather than as part of the prescribed forcing as in previous 
studies without interactive vegetation.  

In order to generate model versions with different climate sensitivities we have 
changed a parameter in the formulation of outgoing planetary longwave radiation at the 
top-of-the-atmosphere QPLW in the atmospheric Energy-Moisture Balance Model 
(EMBM) of the UVic model version 2.8 (14, 28). The UVic model uses a polynomial 
formulation by Thompson and Warren (29): 
QPLW = c00 + c01r + c02r2 +(c10 + c11r + c12r2)Ta+(c20 + c21r + c22r2)Ta

2+(c30 + c31r + 
c32r2)Ta

3          (S1) 
that depends on surface air temperature Ta and surface relative humidity r. In order to 
keep global preindustrial surface air temperature constant we varied the slope of this 
curve with respect to Ta by changing c10 and c00 simultaneously (Figure S1). Equation S1 
implicitly includes the effects of the water vapor and lapse-rate feedbacks as well as 
cloud feedbacks on infrared radiation. The larger the slope c10 the larger the response of 
QPLW will be to a given change in temperature. Since this is a negative feedback, the 
climate sensitivity is smaller the larger the slope c10. We have created an ensemble of 25 
different model versions by varying c10 from 1.7 to 18.1 Wm-2K-1. The standard model 
uses c10 = 2.6 Wm-2K-1. Present-day observations do not provide firm constraints on these 
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parameters as illustrated in Figure S1, although very small and very large values can 
probably be excluded. However, we have retained models with extreme values in order to 
gauge the constraints imposed by LGM data only, without considering constraints from 
present day observations.  

We carried out three types of simulations with each ensemble member: a pre-
industrial control run, a double CO2 run (to determine ECS2xC) and four LGM 
experiments. The LGM experiments consider uncertainty in dust forcing, wind stress and 
initial conditions (different initial states of the Atlantic Meridional Overturning 
Circulation AMOC). All simulations were integrated for 2000 years after which surface 
climate is close to equilibrium. (E.g. global mean surface air temperature changes by 
2.2×10-4 K/yr for ECS2xC=5.6). The average of the last 500 years were used for the 
analysis.  

Our standard model simulations of the Last Glacial Maximum (LGM) include 
radiative forcing from larger continental ice sheets (ΔFsfc = –2.2 W/m2) (30), lower 
greenhouse gas concentrations (CO2, CH4, N2O) (ΔFGHG = ΔFCO2 + ΔFCH4 + ΔFN2O  = –
2.8 W/m2) (31-33), changes in the seasonal distribution of insolation (annually averaged 
ΔFins = 0 W/m2), and higher atmospheric dust levels (Figure S2; ΔFdust = –0.9 W/m2) 
(34). The total radiative forcing in the standard model ΔFLGM = ΔFsfc + ΔFGHG + ΔFdust  = 
–5.9 W/m2 is similar to previous estimates (35), but less than another recent study (36) 
who estimated ΔFLGM = –9.5 W/m2, partly because of higher assumed dust ΔFdust = –1.9 
W/m2 and ice sheet ΔFsfc = –3.2 W/m2 forcing by Köhler et al. and because they prescribe 
surface albedo changed from changes in vegetation ΔFveg = –1.1 W/m2, which is 
considered an internal feedback in our study. 

Twenty-two additional LGM experiments have been conducted with varying dust 
forcing and surface wind stress anomalies, but our ensemble does not explore 
uncertainties in surface or greenhouse gas forcings. 

Ice sheets are prescribed as fixed differences in the surface elevation in the model 
(not interactive). This affects surface air temperatures according to a fixed lapse rate 
(5K/km), which leads to a changed albedo because of accumulating snow cover. (Albedo 
is not prescribed.) Forcing due to surface albedo changes associated with the increased 
land area covered with ice sheets was estimated by performing an additional simulation 
with pre-industrial boundary conditions but added LGM ice sheets. The difference in 
shortwave fluxes at the top of the atmosphere between this experiment and the pre-
industrial control run gives the forcing due to surface albedo changes resulting in the 
value of ΔFsfc = –2.2 W/m2 reported above. Northern hemisphere ice sheets contribute –
1.8 W/m2, southern hemisphere ice sheets –0.3 W/m2 and changes in non-ice sheet 
covered areas –0.1 W/m2. This estimate, which includes the effects of changes in snow 
cover, is within the range (–1.9 to –2.9 W/m2) of previous studies (37-40) but smaller 
than the –3.2 W/m2 by Köhler et al. (36). We do not consider the effect of surface albedo 
changes caused by differences in land-sea distribution away from ice sheets associated 
with exposed continental shelves. This effect has been estimated to be small (–0.4 W/m2) 
(38). Including this forcing, which is 7% of the total, could decrease our estimate of 
ECS2xC slightly (by up to 0.2 K). 

For dust we use two-dimensional maps (Figure S2) of longwave and shortwave 
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radiative forcing for the LGM and pre-industrial climate as simulated by the interactive 
dust model of (34), which uses the Community Atmospheric Model, as described in (11).  
The dust model results were tuned for the LGM to best match available deposition 
observations, and matched these observations for the current climate, especially in the 
annual mean. The shortwave and longwave impacts of desert dust were included, as 
described in (41).  We assumed the best available optical values for the desert dust 
particles (41), but these are uncertain (42), and there are large differences in the results if 
different optical values are used (43).  
2. Temperature Reconstructions  
We have combined recent syntheses of global sea surface temperatures (SSTs) from the 
Multiproxy Approach for the Reconstruction of the Glacial Ocean (MARGO) project 
(12) and surface air temperatures (SAT) over land based on pollen distributions (13), with 
additional data (see subsection 2.1 below) from ice sheets, land and ocean (44). The 
combined temperature reconstructions are shown in Figure 1. The published error 
estimates are shown in Figure S3.  
2.1.  Shakun et al. (2011) LGM temperature dataset 
This dataset (Table 1) consists of 54 proxy temperature records spanning some or the 
entire LGM interval (19-23 ka) that are not included in the MARGO (2009) or Bartlein et 
al. (2011) datasets. The records are based on various proxies from ocean, land, and ice, 
including alkenones (n=21), foraminiferal Mg/Ca (n=18), foraminiferal assemblages 
(n=4), TEX86 (n=4), MBT/CBT (n=2), and ice cores (n=5). LGM temperature anomalies 
and errors were calculated following the methods used by MARGO (2009). One 
difference, however, is that many of these records (n=34) are high-resolution time series 
that extend to the late Holocene. Therefore, LGM anomalies for these records were 
calculated as the difference between the 19-23 ka and 0-2 ka means. This approach only 
assumes that the proxies accurately record the magnitude of LGM-Late Holocene 
temperature change, rather than absolute LGM temperatures. For the remaining 20 
records, LGM anomalies were calculated from modern mean annual temperature at 10 m 
water depth using the World Ocean Atlas 98 dataset, as done by MARGO (2009). 
Twenty-six of the ocean records come from locations where the MARGO 5°x5° LGM 
temperature anomaly grid already contains values. Therefore, these MARGO grid points 
were updated with these new records, and errors were propagated following MARGO’s 
(2009) methods. The dataset is available at 
http://mgg.coas.oregonstate.edu/~andreas/data/schmittner11sci/. 
2.2  Mg/Ca salinity bias 
Recent research suggests that foraminiferal Mg/Ca may be sensitive to salinity (45, 46). 
If so, correcting Mg/Ca records for the ~1 unit increase in global ocean salinity at the 
LGM would decrease reconstructed SSTs. The magnitude of this temperature correction 
would vary with the absolute value of the salinity and SST at the core site due to the 
nonlinear relationships between salinity and “excess Mg/Ca”, and Mg/Ca and SST. For 
example, (46) estimate an additional 1°C LGM cooling for a western tropical Pacific 
record, while (45) calculate an additional 1.8°C cooling for a Caribbean record. Since 
none of the Mg/Ca records used in our study have been corrected for this salinity effect, 
taking it into account would increase reconstructed LGM cooling and thus our estimate of 
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climate sensitivity. Nonetheless, we estimate that the impact on our results would be 
minor. In particular, Mg/Ca accounts for only 9% (66 of 742) of the individual SST 
reconstructions used here, and only 5% of the global (ocean and land) temperature 
reconstructions. Moreover, it is unclear now many of these Mg/Ca reconstructions were 
affected by large salinity changes that would introduce a bias since it only occurs at high 
salinities (>35) (45). Assuming a typical temperature correction of -1°C for all Mg/Ca 
records due to this salinity effect and averaging that through to the LGM global cooling 
estimate would increase it on the order of ~0.05°C (i.e., 5% of 1°C). This is well within 
the error of our 3.6 ± 1°C LGM cooling estimate and would have little effect on the likely 
range of climate sensitivity we report. 

The reconstructed LGM-modern temperature anomalies are plotted against the 
reconstruction errors in Figure S4.  Land points show greater LGM cooling than ocean 
points.  The SST proxies, however, generally have greater reconstruction errors than the 
land proxies. 
3. Snowball Earth 
Figure S5 shows three snapshots in the transition to a completely ice covered Earth for a 
high climate sensitivity model (ECS2xC = 8.2 K). Shortly after model year 460, that is 460 
years after the switch to LGM boundary conditions, Earth is completely ice covered in 
this simulation. 
4. Simulated Ocean Circulation 
For LGM boundary conditions the standard model exhibits a threshold around 
ECS2xC=2.7 at which the Meridional Overturning Circulation (MOC) of the ocean 
changes from a mode with deep water formation in the North Atlantic (ECS2xC<2.7) to a 
mode with deep water formation in the North Pacific (ECS2xC>2.7) as illustrated in 
Figure S6. Note that only an index of the Atlantic MOC is shown in Figure S6, but 
inspection of the full streamfunction shows that the mode with zero AMOC exhibits 
sinking in the North Pacific down to about 2000 m depth (not shown) due to the Atlantic-
Pacific seesaw mechanism (47), whereas the mode with active AMOC has no deep water 
formation in the North Pacific. The mode with deep water formation in the North Atlantic 
is consistent with the observed modern circulation pattern whereas the mode with sinking 
in the North Pacific is not. Paleoclimate data show that deep water formation in the North 
Atlantic was active during the LGM (albeit perhaps weaker and/or shallower than at 
present day) (48) contrary to the standard model results for high climate sensitivities. 
Sensitivity experiments with added wind stress anomalies from a coupled ocean-
atmosphere model (GENMOM) (49) result in a stronger AMOC than that of the control 
simulation and do not exhibit the threshold seen in the model without wind stress 
anomalies. Results from these experiments show that the climate sensitivity estimates do 
not depend much on the state of the MOC (subsection 7.3). 
5. Data-Model Comparisons and Residual Analysis  
Figure S7 shows the zonally averaged temperature changes from the best fitting model 
(ECS2xC=2.4 K), Figure S8 shows the spatial distribution of the residuals (model minus 
reconstructions). The correlation coefficient for the 2D temperature changes is 0.53 and 
the root mean squared error is 2.3 K.  
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Histograms of reconstructed temperature anomalies are plotted against the 
modeled temperature anomalies for several different climate sensitivites in Figure S9.  
The reconstructed SSTs are most compatible with a model ECS2xC near 2 K, whereas the 
reconstructed land SATs are most compatible with a model ECS2xC near 3 or 4 K, when 
comparing peaks of the reconstructed and modeled anomaly distributions.  When land 
and ocean anomalies are considered together, an ECS2xC near 2 K is favored when 
comparing peaks, similar to the SST comparison, likely because the ocean data are more 
abundant than the land data. 

The data-model residual temperature anomalies are plotted in Figure S10 for 
ECS2xC = 2.2 K.  The residuals show some evidence of non-normality.  However, the 
land and ocean residuals individually appear more normal, suggesting that the combined 
residuals are a mixture of two normal distributions.  This motivates a statistical treatment 
of the data as normally distributed with different covariance structures over land and 
ocean.  The land residuals show greater variability than the ocean residuals, as might be 
expected.  Neither the land nor ocean residuals display a strong skewness, nor 
particularly heavy tails.  While the ocean residuals are centered at zero the land residuals 
are not, indicating that the land data do not favor this ECS2xC value. 

To further explore the differences between the ECS2xC values implied by the land 
and ocean data, Figure S11 plots the mean and 90% interval of the reconstructed 
temperature anomalies against the mean and 90% interval of the modeled temperature 
anomalies as a function of model ECS2xC.  The range of modeled land SAT anomalies 
lies within the range of reconstructed SAT anomalies for ECS2xC below ~5 K, whereas 
the range of modeled ocean SST anomalies lies within the range of reconstructed SST 
anomalies for ECS2xC below ~3 K.  This is compatible with the Figure S9, which shows 
that the ocean SST data favor lower ECS2xC values than the land SAT data.  

The modeled ocean anomalies also show an abrupt decrease in the lower 
temperature range near ECS2xC = 2.7 K, where the AMOC collapses (Fig. S6). Figure 
S12 shows a data model comparison with the North Atlantic points excluded. (The 
excluded region is defined empirically to be those Northern Hemisphere ocean grid cells 
for which the modeled temperature anomaly in the ECS2xC = 2.83 K run is more than 1 K 
colder than the anomalies in the ECS2xC = 2.51 K run.  This includes most of the North 
Atlantic and Mediterranean Sea, and no other grid cells.)  The data-model comparison 
suggests that SST data outside of the North Atlantic region are compatible with a larger 
range of climate sensitivities (below ECS2xC = 4 K) than are the SST data with the 
AMOC region included (as discussed above). 
6. Statistical Analysis 
6.1  Regridding and Sea Level Correction 
For the purpose of data-model comparison the model output is mapped from the UVic 
grid (1.8×3.6°) onto the grids of the temperature reconstructions (5×5° grid for the SSTs 
and Shakun et al. data and 2×2° grid for the pollen data).  A correction of 0.32 K is added 
to the modeled SST everywhere in order to account for the 120 m lower sea level at the 
LGM. The value of ΔSSTSL = 0.32 K is determined from an additional model simulation 
in which sea level is explicitly lowered and a constant global mean lapse rate of 5 K km-1

 

is used to calculate surface air temperatures. The analysis uses modeled SSTs over the 
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oceans and SATs over land. 
6.2  Model Emulation 
In order to predict the model output at arbitrary climate sensitivities, the model output at 
each grid cell is emulated by linear interpolation of the model output over the ECS2xC 
values in the ensemble.  A total of n=435 independent linear emulators are constructed, 
one for each grid cell containing data.  In addition to a linear interpolator, several other 
types of statistical emulators were also evaluated, including independent cubic spline 
interpolators, independent thin-plate spline interpolators, and a Gaussian process outer 
product emulator with a linear mean function and an exponential covariance function 
separable in latitude and longitude.  None produce obviously better emulation than the 
simple linear emulator, and most suffer from some ‘overshoot’ problems where the 
emulator failed to capture rapid changes in output near ECS2xC = 2.7 K, at which the 
AMOC collapses (Figure S6).  A linear interpolator emulator has the disadvantage of not 
being able to estimate its own interpolation uncertainty (‘code uncertainty’), but the code 
uncertainty estimates from the Gaussian process emulator were much smaller than the 
temperature reconstruction and UVic model errors, and are presumably negligible in the 
inference. 
6.3  Statistical Model 
For statistical analysis it is assumed that the temperature anomaly reconstructions are 
normally distributed about the (emulated) modeled anomalies for some “best” value of 
ECS2xC, possibly with some bias (b).  That is, 

     Tobs ~ N(µ=Tmod(ECS2xC) + b, Σ) ,    (S2) 
or, equivalently, 
    Tobs = Tmod(ECS2xC) + b + ε, ε ~ N(µ=0, Σ)   (S3) 

where Tobs, Tmod, b, and ε are vectors of length n, and Σ is an n×n covariance matrix 
describing the model and observation errors.  The inference problem is to compute a 
probability density function for ECS2xC conditional on the observations, p(ECS2xC |Tobs). 

To account for the possibility of different biases and errors over land and ocean 
(see Residual Analysis), the vectors and matrices are decomposed into separate land and 
ocean blocks.  The bias is then b = [bL bO] where bL and bO are constant vectors of length 
nL = 113 and nO = 322.  (Here and elsewhere the same symbol is used to refer to both a 
scalar and a constant vector equal elementwise to that scalar.)  Conceptually a bias can be 
attributed to systematic errors in the modeled temperatures, the proxy temperature 
reconstructions, or both.  While the UVic model does have spatial biases in surface 
temperature, the bias in the LGM-modern temperature anomaly should be reduced if the 
model makes similar absolute errors in the LGM and modern periods. The 
reconstructions may contain biases e.g. due to age model errors. Since the LGM 
corresponds to a temperature minimum in time in most regions age model errors can lead 
to systematically warmer reconstructions. In the default analysis the bias is assumed to be 
zero, because it is highly confounded with climate sensitivity, the quantity of interest.  
Arbitrarily large climate sensitivities (cold LGM temperature anomalies) can be made 
compatible with the data by introducing a sufficiently large positive model bias, and 
similarly for arbitrarily small climate sensitivities.  We later consider sensitivity tests in 
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which small nonzero biases over land or ocean are assumed. 
The error covariance matrix is decomposed into the sum of three different sources 

of error:  observation (proxy) error, spatially correlated error, and an additional small-
scale, spatially independent source of error referred to in geostatistics as a ‘nugget’: 

     Σ  = Σobs + Σspatial + Σnugget .     (S4) 

The proxy reconstruction errors form a vector σobs.  Assuming the reconstruction 
errors are spatially independent, the corresponding covariance matrix is diagonal 
containing the error variances, Σobs = diag(σobs

2).  The reconstruction errors are likely not 
completely spatially independent, but the proxy error estimates used in this analysis do 
not include estimates of spatial correlation.  With sufficient data and a perfect model it is 
possible to estimate the spatial correlation from the data-model residuals.  However, the 
model is not perfect and its errors are also spatially correlated.  Without knowing the 
reconstruction or model error a priori, there is confounding between the two sources of 
error and their spatial structures cannot be estimated independently. 

The other two error terms (spatial and nugget) are introduced to account for this 
confounding between observation and model error.  The spatial error term represents all 
the spatial dependence in the total residual errors, including both reconstruction and 
model spatial error.  The spatial correlation function is assumed to be exponentially 
decaying in distance, 

     cor(xi, xj) = exp[-d(xi, xj)/λ] ,     (S5) 

where the function d(⋅,⋅) gives the geodesic distance between two points on the Earth’s 
surface, and λ = 2000 km is a spatial correlation e-folding length scale. Future work 
could make use of more sophisticated (albeit computationally expensive) approaches for 
specifying covariance functions on the sphere (50). 

This correlation function is homogeneous and isotropic, assigning the same 
correlation length scale over land and ocean, and in zonal and meridional directions.  
These assumptions are only approximately correct; for example, one might expect the 
correlation length to be longer over ocean than land, or longer within a latitudinal zone 
than along a longitudinal meridian.  The latter expectation could be addressed with a 
correlation function that is separable in latitude and longitude, with separate correlation 
lengths for each, but it its unclear how then to properly account for geodesic distances on 
the sphere while maintaining zonal/meridional anisotropy.  In general, it seems difficult 
to significantly improve upon the assumed correlation function without introducing a 
highly complex non-separable correlation function, while simultaneously guaranteeing 
both its well-posed form (positive definite on the sphere) and estimating its structure 
from limited (< 500) data points. 

The spatial error magnitudes are assumed to differ over land and ocean, σL and 
σO.  Together with the correlation function they give a block spatial covariance matrix 
(51), 

      ,    (S6) 
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where cLL, cOO, cLO matrix blocks give the exponential correlations between land points 
and other land points, ocean points and ocean points, and land and ocean points, 
respectively. 

The third error term, the nugget, is intended to account for spatially independent 
errors that are not explicitly accounted for in the reconstruction error Σobs.  These could 
represent either additional reconstruction error in case the calculated errors are 
overconfident, or sub-grid scale variability in model error, or some combination of both.  
The nugget covariance matrix is diagonal since it is spatially independent, but different 
nugget variances ηL

2 and ηO
2 over land and ocean. It is given by Σnugget = diag([ηL

2
 ηO

2]), 
i.e. with two diagonal blocks that are multiples (ηL

2 and ηO
2) of the identity matrix. 

6.4 Bayesian Inference 
The Bayesian procedure for inferring the joint probability distribution of a vector of 
unknown parameters θ is to construct the posterior probability distribution 
     

� 

p(θ |Tobs)∝ L(Tobs |θ )p(θ ) ,     (S7) 

where L(Tobs|θ) is the likelihood function giving the probability of observing the data 
assuming known values of the parameters, and p(θ) is the prior probability of the 
parameters.  In this case the unknown parameters are taken to be the climate sensitivity as 
well as the land and ocean spatial errors, θ = (ECS2xC, σL, σO).  The correlation length λ, 
nugget errors ηL and ηO, and biases bI and bO are also unknown, but we choose to fix 
them at assumed values rather than infer them. 

The biases are assumed to be zero for reasons discussed above (confounding with 
ECS2xC).  The correlation length and nuggets are fixed to constant values to avoid 
confounding with σL and σO. In general, it is difficult to simultaneously estimate the 
spatial variance, nugget variance, and correlation length of a Gaussian process from 
limited data.  The assumed values are λ = 2000 km, ηL = 2.5 K, and ηO = 0.5 K, chosen 
from a combination of comparative residual analysis over land and ocean, exploratory 
variogram analysis, inspection of the likelihood surface at different fixed values, and 
prior expectations about the range of correlation and the relative amounts of temperature 
variability between land and ocean.  We consider later the effects of varying these 
assumptions. 

The normal likelihood function is given by a multivariate normal distribution, 

   L(Tobs | ECS,σ L ,σO ) =
1

(2π )n detΣ
exp − 1

2
rTΣ−1r⎡

⎣⎢
⎤
⎦⎥

,  (S8) 

     r = Tobs – [Tmod(ECS2xC) + b] , 
where r is the bias-corrected data-model residual vector. 

The prior probabilities of the uncertain parameters are assumed independent of 
each other.  The prior probabilities on the land and ocean spatial errors are assumed to be 
Lognormal(log(2.5), log(2)/2), i.e., their logarithm is normal with mean log(2.5) and 
standard deviation log(2)/2, intended to reflect a prior error estimate of 2.5 K uncertain 
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by a factor of 2 (from 1.25 to 5 K).  For climate sensitivity, a bounded uniform prior over 
the range of modeled ECS2xC values (0.26 to 8.37 K) is assumed for simplicity.  While 
this prior has proven controversial for estimating climate sensitivity from limited 
instrumental data (e.g. 52, 53), the inference is presumably less sensitive to the prior in a 
paleo context with data collected over longer time scales.  Furthermore, we consider an 
alternate prior that is bounded uniform on the climate feedback (∝ 1/ECS2xC).  The 
resulting inference for ECS2xC (see Sensitivity Analysis) does not strongly differ between 
the two priors, and other statistical assumptions have more influence on the inference.  
Presumably a prior that uses other constraints (such as modern instrumental data) would 
give an inference for ECS2xC which lies somewhere between the inferences from the 
uniform ECS2xC and uniform feedback priors, which have prior means — 4.3 and 1.6 K 
over these bounds, respectively, assuming a 3.7 W m-2 forcing for a CO2 doubling — that 
are on the upper and lower ends of the ECS2xC ranges found in other studies (1). 
6.5 Monte Carlo Sampling 
Given the posterior probability distribution for the uncertain parameters given by the 
above likelihood function and priors, the Bayesian inference proceeds by Markov chain 
Monte Carlo (MCMC) sampling using the Metropolis algorithm.  The Metropolis 
algorithm generates a correlated random walk through parameter space designed so that 
points in parameter space are visited (sampled) in direct proportion to their calculated 
posterior probability. 

The resulting set of samples from the posterior distribution, the Markov chain, can 
be used to approximate any quantity of interest (means, quantiles, distributions) by 
sample statistics (sample means or quantiles, histograms or kernel density estimates).  A 
particular advantage of MCMC method is the ease with which they can compute the 
marginal distributions of individual parameters from the joint posterior of all uncertain 
parameters.  Theoretically, the marginal distribution of a parameter is obtained by 
averaging over the uncertainty in all other (‘nuisance’) parameters, e.g., for climate 
sensitivity, 

    p(ECS |Tobs ) = p(ECS,σ L ,σO |Tobs )dσ L dσO∫∫ .  (S9) 

With MCMC sampling the desired marginal distribution can be obtained by simply 
constructing a histogram or density estimate of only the ECS2xC samples in the chain, 
‘forgetting’ about the samples of the other parameters. 

A two-stage adaptive Metropolis algorithm is employed in all analyses.  First a 
preliminary chain of 20,000 samples is constructed using informed guesses for the 
starting point in the chain and for the step sizes proposed for the random walk.  Then a 
second chain of 100,000 samples is constructed, starting at the posterior mean of the first 
chain, and with a multivariate normal proposal distribution approximately proportional to 
the sample covariance of the first chain (54).  This allows the Metropolis algorithm to 
more efficiently propose moves that are adapted in magnitude and direction to the 
posterior distribution approximated by the first, possibly poorly converged chain.  Only 
the second, adapted chain is used in further analysis. 

The resulting chains appear well converged in graphical diagnostics, have 
reasonable acceptance rates for proposed moves in the random walk (41% for the default 
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analysis), and have reasonable effective sample sizes (between 6000 and 7000 for the 
three parameters estimated in the default analysis). 
6.6 Joint Posterior 
The posterior inferred from the proxy data is given in Figure S13.  The marginal 
distribution for ECS2xC is peaked near the posterior mean of 2.2 K, and is multimodal.  
This multimodality could be partly due to the non-smooth linear interpolation of the 
model emulator, but also may reflect real physical behavior of the model (for example, 
the collapse of the AMOC near ECS2xC = 2.7 K).  The estimated spatial errors are around 
3.5 K over land and 1.5 K over ocean.  The joint posterior shows little correlation 
(confounding) between ECS2xC and the two spatial error parameters. 
7. Sensitivity Tests 
A number of experiments are performed to examine the sensitivity of the inference to 
statistical and physical assumptions.  These tests, which are summarized graphically in 
Figures S14 and S14, are described below.   In addition to the tension between land and 
ocean based estimates of ECS2xC, the inferred ECS2xC distribution has some sensitivity to 
assumptions about bias, nugget variance, and correlation length, as well as dust forcing 
and sea level SST corrections.  Wind stress forcing narrows the uncertainty range but 
does not significantly change the mean estimate. 
7.1  Land/Ocean 
The analysis is applied to only the land or only the ocean data.  The ocean-only inference 
for ECS2xC is similar to the combined inference, with a range of about 1.5 to 3 K, 
indicating that the ocean data dominate the land data in the inference.  The land-only 
inference supports significantly higher climate sensitivities, roughly similar to the 2 to 4.5 
K IPCC range. 
7.2 Dust Forcing 
In order to account for the uncertainty in dust forcing we have estimated the surface 
temperature response to dust forcing using a subset of 11 models with different ECS2xC 
and performed an additional LGM experiment for each of those models without dust 
radiative forcing. Assuming a linear response to dust forcing, we interpolated between 
these simulations to fill in the additional ECS2xC values for which no experiments had 
been performed (0×Dust). Then we extrapolated (doubled) the surface temperature 
response to estimate two times larger dust forcing (2×Dust). The results from shown that 
increasing the dust forcing implies a lower ECS2xC (below 2 K) while eliminating the dust 
forcing implies a higher ECS2xC (near 3 K). 
7.3  Wind Stress Forcing 
The UVic model uses prescribed wind stress at the sea surface in order to force the ocean 
and sea ice model components. In the standard model we use present day wind stress. In 
order to account for changes in winds at the LGM we applied an anomaly (LGM minus 
LH) calculated from the coupled ocean-atmosphere general circulation model GENMOM 
(49). Monthly mean anomalies were added to the seasonal climatology of the wind stress 
fields.  
 In both cases the inference with wind stress corrections favors ECS2xC near 2 K, as 
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in the default analysis, but with reduced uncertainty. The AMOC is significantly stronger 
in models with GENMOM wind stress forcing (Figure S6) in the LGM run than in the 
LH run, a result that may be inconsistent with deep ocean carbon isotope paleo-data (48), 
indicating possible structural model uncertainty. 
7.4  Sea Level SST Correction 
The correction of ΔSSTSL = 0.32 K added to the simulated SST in order to account for the 
lower sea level during the LGM was estimated by one additional model simulation as 
described in section 6. The value of 0.32 K is only half of what one would expect from a 
simple application of a constant lapse rate of 6 K/km. Uncertain model parameters, such 
as the application of a reduction of the lapse rate in the calculation of outgoing longwave 
radiation over topography (this parameter is called rfactor in the UVic model version 2.8 
source code) may be the reason for this deviation and suggest that the model derived 
value may be uncertain. We address this uncertainty by varying ΔSSTSL from 0 to 0.64.  
 Lower ECS2xC (below 1.5 K) is favored in the absence of the sea level correction, 
whereas higher ECS2xC (2 to 3 K) is favored by a larger SST correction. 
 We have performed additional model experiments with the fully coupled ocean-
atmosphere general circulation model OSUVic at T42 resolution as described in (55). For 
these experiments we used PMIP3 boundary conditions for ice sheets and atmospheric 
CO2 and use present day sea level in one experiment and 120 m lower sea level in the 
other. The differences between these two models therefore quantify the effect of the sea 
level lowering on SSTs. Because the model is computationally expensive it was 
integrated only for 240 years. Global mean sea surface temperature difference between 
the two simulations is 0.3 K between model years 200 and 240. Global marine surface air 
temperatures are ΔSATSL = 0.46 K warmer. 

Inspection of the spatial distribution shows that over 72% of the surface ocean 
SSTs are between 0.22 and 0.42 K warmer in the simulation with lower sea level, mainly 
between 40°S and 40°N. At higher latitudes in the North Atlantic and North Pacific the 
differences are larger and over the Southern Ocean high latitudes and the Arctic they are 
smaller. These independent results confirm our best estimate of 0.32 K for the global SST 
sea level correction.  
7.5  North Atlantic Data 
The North Atlantic region where the effects of an AMOC collapse in the model (Fig. S6) 
are strongest is excluded from the analysis, as described in the Data-Model Comparison 
section 5.  This favors lower ECS2xC between 1 and 2 K. Inspection of frequency 
distributions of temperature anomalies, analogous to Fig. S9 but excluding the North 
Atlantic region, shows that the main peaks increase for the observations and all models, 
while cold temperature anomalies (below 3 K for the observations and below −2 K, −3.5 
K, and −4.5 K for models with ECS2xC equal to 2 K, 3 K, and 4 K, respectively) become 
less abundant, and the secondary maximum around −3.5 K for model ECS2xC=2 
disappears. This way the temperature distributions at low low ECS2xC change from 
bimodal to unimodal and become more similar to the observed distribution when the 
North Atlantic region is excluded from the comparison, whereas at high ECS2xC the 
temperature distributions, without this bimodality, are relatively unchanged in shape.  We 
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speculate that this causes lower ECS2xC values to receive higher probability weights in 
the Bayesian analysis. This sensitivity test indicates that North Atlantic cooling is an 
influential constraint, favoring higher ECS2xC values. It demonstrates that excluding 
regions can lead to a biased ECS2xC estimate, a result that emphasizes the importance of 
good spatial data coverage. 
7.6  Statistical Assumptions 

Bias: Four experiments assume nonzero bias over land or ocean of ±0.5 K.  The ocean 
bias has a particularly strong influence, altering the ECS2xC estimate by about 1 K.  The 
influence of ocean bias is larger than the influence of land bias, due to the ocean data’s 
overall influence on the inference. 
Nugget Variance: The assumed nugget error of 2.5 K over land and 0.5 K over ocean is 
changed to zero over land and ocean (no nugget), or to 3.5 K over land or 1.5 K over 
ocean (large nugget).  Eliminating the nugget implies a larger ECS2xC but produces an 
extremely narrow uncertainty range, suggesting a mis-specified statistical model.  
Increasing the nugget eliminates ECS2xC below 2 K but otherwise leaves the posterior 
unchanged. 
Spatial correlation:  The assumed correlation length scale of 2000 km is changed to 1000 
km or 5000 km.  The long correlation length eliminates ECS2xC below 2 K; the short 
correlation length favors low ECS2xC near 1 K. 
Observation error:  This sensitivity test explores the role of error specification, in 
particular the influence of model error and spatial auto-correlation. Here the analysis is 
repeated neglecting spatial correlation and model error and assuming only spatially 
independent observation errors.  This gives a very narrow ECS2xC distribution peaked 
near 3.4 K.  The extreme sharpness of the distribution indicates a mis-specification of the 
statistical model (i.e., it is overconfident due to neglecting model error and spatial 
dependence). 
Spatial error:  The analysis is performed assuming only spatially correlated errors (land 
and ocean variances are estimated from the residuals as in the default analysis), 
neglecting observation error and the nugget error.  This gives a sharp ECS2xC mode near 3 
K, although with some probability down to 1 K.  The sharp peak also suggests mis-
specification (i.e., observation and nugget errors are important). 
Heavy tailed likelihood:  To explore the possibility of non-normally distributed errors, a 
multivariate Student-t likelihood is used in place of the multivariate normal likelihood.  
This distribution has 3 degrees of freedom and has a covariance equal to the covariance 
assumed in the multivariate normal analysis.  This slightly favors lower ECS2xC values 
but otherwise leaves the ECS distribution unchanged. 
Climate sensitivity prior:  A prior that is uniform on the climate feedback factor 
F2x/ECS2xC is used instead of the uniform prior on climate sensitivity.  This prior favors 
slightly lower ECS2xC values but leaves the ECS2xC posterior distribution essentially 
unchanged. 
Outliers excluded:  Some grid cells have reconstructed temperature anomalies that are as 
many as 6 standard deviations away from the (posterior mean) modeled anomalies.  To 
test the sensitivity of the inference to the presence of outliers, grid cells with 
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reconstructed anomalies more than 3 standard deviations away from the ECS2xC = 2.51 K 
model run are excluded.  This criterion excludes 8 grid cells, all land cells in North 
America.  The exclusion of outliers has negligible effect on the inference. 
7.7 Other Uncertainties 
Our study does not provide a complete uncertainty assessment. We have taken into 
account a number of known important uncertainties such as dust forcing. Others, 
however, are not included, for example uncertainties in the reconstruction of the ice 
sheets and vegetation cover. Also our model ensemble does not scan the full parameter 
space. For example, changes in shortwave radiation due to clouds are not taken into 
account. Our statistical method does not explicitly consider bias due to limited data 
coverage. 
8. Vegetation Simulation  
Our simulations include the influence of climate and atmospheric CO2 concentrations on 
the vegetation distribution. Figure S10 shows that the largest changes in simulated 
vegetation occur at northern hemisphere high latitudes. The simulated dramatic reduction 
of the boreal/temperate forest in the northern hemisphere extra-tropics from 1.8×10-7 km2 
to 0.4×10-7 km2 is consistent with pollen reconstructions and previous offline vegetation 
modeling (56). The extent of tropical forest decreases in the model from 2.7×10-7 km2 to 
2.4×10-7 km2 is qualitatively consistent with, but quantitatively much less, than simulated 
by (56) who find reductions of (1.1±0.3)×10-7 km2. Globally the area covered by C3 grass 
decreases by 10% (from 4.0×10-7 km2 to 3.6×10-7 km2) whereas C4 grass coverage 
increases by 20% (from 1.1×10-7 km2 to 1.3×10-7 km2) consistent with the competitive 
advantage of C4 photosynthesis under low CO2.  
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Tables 
Table S1 Shakun et al. (44) compilation of reconstructed LGM surface temperature 
anomalies. This dataset is available for download at 
http://mgg.coas.oregonstate.edu/~andreas/data/schmittner11sci 

MARGO  Location Core Proxy Ref. Lat 
(°) 

Lon 
(°) 

Elev./ 
Dept
h (m) 

19-23 
ka T 

0-2 
ka T 

WO
A 98 
T 

LGM 
ΔT 

Err
or 

Lat Lon LGM 
anom 

total 
error 

GISP2, 
Greenl. 

- ice core 
δ18O 
and 
boreh. 
temp 

(57) 72.6 -38.5 3207 -47.1 -31.6  -15.5 2.3     

NE 
Atlantic 

NA 
87-22 

foram 
assembl 

(58) 55.5 -14.7 -2161 6.4 13.5 11.4 -7.0 5.1 57.5 347.5 -5.9 5.1 

NE 
Atlantic 

MD01-
2461 

Mg/Ca (59) 51.8 -12.9 -1153 8.7  12.5 -3.8 1.9     

central N 
Atlantic 

CH 69-
09 

foram 
assembl 

(58) 41.8 -47.4 -4100 16.3 16.4 15.4 -0.2 2.5     

Japan 
margin 

PC-6 UK'37 (60) 40.4 143.5 -2215 12.9 15.7 11.5 -2.9 3.0     

Iberian 
margin 

SU81-
18 

foram 
assembl 

(58) 37.8 -10.2 -3135 17.0  17.6 -0.6 2.2 37.5 347.5 -3.7 2.2 

N 
Pacific 

MD01-
2421 

UK'37 (61) 36.0 141.8 -2224 17.4  19.6 -2.3 1.9 37.5 142.5 -3.0 1.9 

Chinese 
loess pl. 

Section 
MS200
8E 

MBT/ 
CBT 

(62) 34.9 113.3 ~200 15.6 23.4  -7.8 1.9     

Japan 
margin 

KT92-
17 St. 
14 

UK'37 (63) 32.6 138.6 -3252 21.5  22.2 -0.7 3.0     

Blake 
outer 
ridge  

KNR1
40-
51GG
C 

Mg/Ca (64) 32.6 -76.3 -1790 25.6  24.6 1.0 2.0     

Nile 
Delta 

GeoB 
7702-3 

TEX86 (65) 31.7 34.1 -562 15.9 26.8 21.9 -10.9 4.3 32.5 32.5 -5.1 4.3 

East 
China S 

MD98-
2195 

UK'37 (66) 31.6 129.0 -746 20.6 23.6 22.4 -3.0 2.0     

Gulf of 
Mexico 

MD02-
2575 

Mg/Ca (67) 29.0 -87.1 -847 22.6 25.4 24.3 -2.8 1.9     

Red Sea GeoB 
5844-2 

UK'37 (68) 27.7 34.7 -963 23.1 26.7 25.3 -3.7 2.0     

Gulf of 
Mexico 

EN32-
PC6 

Mg/Ca (69) 27.0 -91.3 -2280 23.6  25.1 -1.5 3.8 27.5 267.5 -4.0 3.8 

NWAfri
can 
margin 

ODP 
658C 

foram 
assembl 

(70) 20.8 -18.6 -2263 15.2 20.8 20.3 -5.5 1.9 22.5 342.5 -2.3 1.9 

S. China 
Sea  

ODP 
1144 

Mg/Ca (71) 20.1 117.6 -2037 23.6 27.2 26.4 -3.6 1.6 22.5 117.5 -3.2 1.6 

Arabian 
Sea 

74KL UK'37 (72) 14.3 57.3 -3212 25.0 27.2 26.6 -2.1 1.1 12.5 57.5 -1.5 1.1 

Arabian 
S 

74KL TEX86 (72) 14.3 57.3 -3212 24.4 27.4 26.6 -3.0 1.1 12.5 57.5 -1.8 1.1 

Western 
Caribbea
n Sea 

VM28-
122 

Mg/Ca (73) 11.6 -78.4 -3623 24.1  27.7 -3.6 1.7 12.5 282.5 -4.0 1.7 

Arabian 
Sea 

NIOP-
905 

UK'37 (72) 10.8 51.9 -1567 25.4 26.3 26.0 -0.9 1.2 12.5 52.5 -1.2 1.2 
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Arabian 
Sea 

NIOP-
905 

TEX86 (72) 10.8 51.9 -1567 22.7 26.2 26.0 -3.5 1.4 12.5 52.5 -1.5 1.4 

E eq. 
Pacific 

MD02-
2529 

UK'37 (74) 8.2 -84.1 -1619 26.0 29.1 28.2 -3.1 2.5     

E eq. 
Pacific 

ME000
5A-
43JC  

Mg/Ca (75) 7.9 -83.6 -1368 24.0  28.2 -4.3 1.5     

S China 
Sea  

MD01-
2390 

UK'37 (76) 6.6 113.4 -1545 26.7  28.4 -1.8 1.4 7.5 112.5 -2.9 1.4 

S China 
Sea  

MD01-
2390 

Mg/Ca (76) 6.6 113.4 -1545 24.6 27.6 28.4 -3.0 1.2 7.5 112.5 -2.9 1.2 

Gulf of 
Guinea 

MD03-
2707 

Mg/Ca (77) 2.5 9.4 -1295 23.1 25.8 27.6 -2.7 1.5     

E eq. 
Atlantic  

GeoB 
4905 

Mg/Ca (78) 2.5 9.4 -1328 24.2 26.1 27.6 -1.9 1.5     

E eq. 
Pacific 

ME000
5A-
24JC 

UK'37 (79) 0.0 -86.5 -2941 23.3  24.3 -1.0 1.3 2.5 272.5 -1.7 1.3 

E eq. 
Pacific 

V21-
30 

UK'37 (80) -1.2 -89.7 -617 24.1  22.8 1.3 6.4 -2.5 272.5 -2.7 6.4 

E eq. 
Pacific 

V19-
28 

UK'37 (81) -2.4 -84.7 -2720 21.9 24.0 22.7 -2.1 3.5 -2.5 277.5 -2.6 3.5 

Brazilian 
margin  

GeoB 
3910 

UK'37 (81) -4.2 -36.3 -2362 25.9 27.1 27.3 -1.2 0.9 -2.5 322.5 -1.4 0.9 

Western 
tropical 
Atlantic  

GeoB 
3129 

Mg/Ca (82) -4.6 -36.6 -830 24.6 27.3 27.3 -2.7 0.9 -2.5 322.5 -1.6 0.9 

West 
Pacific 

MD98-
2176 

Mg/Ca (83) -5.0 133.4 -2382 26.2 28.8 28.2 -2.6 2.5     

Congo 
Basin 

GeoB 
6518-1 

MBT/ 
CBT 

(84) -2.0 22.0 9999
99 

20.9 24.9  -4.0 1.9     

Gulf of 
Guinea 

GeoB 
6518-1 

UK'37 (85) -5.6 11.2 -962 22.5 24.6 24.4 -2.1 2.3 -7.5 12.5 -3.2 2.3 

Lake 
Tangany
ika 

NP04-
KH3, 
NP04-
KH4 

TEX86 (86) -6.7 29.6 773 24.0 27.5  -3.5 1.5     

West 
Pacific 

MD98-
2165 

Mg/Ca (87) -9.7 118.4 -2100 24.6 27.1 27.8 -2.5 2.5     

West 
Pacific 

MD98-
2170 

Mg/Ca (83) -
10.6 

125.4 -832 26.6  28.4 -1.8 1.9     

Timor 
Sea, 
Indian 
Ocean 

MD01-
2378 

Mg/Ca (88) -
13.1 

121.8 -1783 25.2 28.0 28.3 -2.8 1.0 -12.5 122.5 -1.4 1.0 

Subtropi
cal SE 
Atlantic 

ODP 
1084B 

Mg/Ca (89) -
25.5 

13.0 -1992 11.4 13.5 16.2 -2.1 1.5 -27.5 12.5 -0.7 1.5 

Brazilian 
margin  

KNR1
59-5-
36GG
C 

Mg/Ca (64) -
27.5 

-46.5 -1268 23.8  23.2 0.6 1.8 -27.5 312.5 -1.2 1.8 

Chilean 
margin 

GeoB 
7139-2 

UK'37 (90) -
30.2 

-72.0 -3270 14.9  15.5 -0.5 3.0     

South 
Australia 

MD03-
2611 

UK'37 (91) -
36.7 

136.7 -2420 11.0 18.2 16.2 -7.2 3.0     

New 
Zealand  

MD97-
2121 

UK'37 (92) -
40.4 

178.0 -3014 13.2  16.6 -3.4 1.3 -42.5 177.5 -3.2 1.3 

Chilean 
margin 

ODP 
1233 

UK'37 (93) -
41.0 

-74.5 -838 9.4  13.3 -3.9 2.0     

SE 
Atlantic  

TN057
-21-

UK'37 (94) -
41.1 

7.8 -4981 14.5  11.2 3.3 2.6     
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PC2 
SE 
Atlantic  

TN057
-21 

Mg/Ca (95) -
41.1 

7.8 -4981 10.3  11.2 -0.9 2.0     

New 
Zealand  

SO136
-GC11 

UK'37 (96) -
43.5 

167.9 -1556 9.6  14.5 -4.9 1.0 -42.5 167.5 -4.6 1.0 

New 
Zealand  

MD97-
2120 

UK'37 (92) -
45.5 

174.9 -1210 6.6  11.0 -4.4 3.4 -47.5 172.5 -6.7 3.4 

EDML, 
Antarct. 

- ice core 
δ18O 

(97, 
98) 

-
75.0 

0 2892 -7.4 0.0  -7.4 1.1     

Dome C, 
Antarct. 

- ice core 
δ18O 

(97, 
98) 

-
75.1 

123.4 3240 -9.3 0.0  -9.3 1.4     

Dome 
Fuji, 
Antarct. 

- ice core 
δ18O, 
δD 

(99) -
77.3 

39.7 3810 -8.2 0.0  -8.2 1.2     

Vostok, 
Antarct. 

- ice core 
δD 

(100
) 

-
78.5 

108 3500 -8.1 0.0  -8.1 1.2     
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Figures 

 
Figure S1: Outgoing longwave radiation QPLW at the top-of-the-atmosphere as a function 
of surface air temperature Ta. Colored lines show results of the parameterization by 
Thompson and Warren (1982) (equation S1) with different slopes and approximately 
constant Ta at its preindustrial value of 13°C. Colored numbers denote the ECS2xC of the 
different model versions. Symbols show near-surface (2 m) air temperature data from the 
NCEP reanalysis (101) and longwave radiation from ERBE satellite measurements (102) 
averaged over 10 degree latitudinal bands. 
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Figure S2: Annual mean dust forcing (LGM minus pre-industrial) as a function of 
longitude and latitude used as a perturbation to the fluxes at the top-of-the-atmosphere in 
the UVic model. Top: shortwave forcing, center: longwave forcing, bottom: total 
(shortwave plus longwave) forcing. Negative (blue) values denote a cooling influence, 
positive (red) a warming. From (34). 
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Figure S3: Error in the LGM temperature reconstructions as reported in the original 
publications (12, 13, 44). 
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Figure S4: Scatterplot of reconstruction error vs. reconstructed temperature anomaly for 
land (green) and ocean (blue) data, along with marginal distributions of temperature 
errors (top) and temperature anomalies (right). 
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Figure S5. Annual mean snow and ice cover (white) in the LGM experiment with a 
ECS2xC=8.3 K at different times during the integration. Top: 100 model years after the 
switch to LGM boundary conditions, center: 440 years, and bottom: 460 years.  
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Figure S6. Simulated Atlantic Meridional Overturning Circulation (AMOC) at 25°N as a 
function of the climate sensitivity. Results from the pre-industrial control simulation are 
shown as red crosses, LGM results as black xes and results from LGM experiments with 
wind stress from GENMOM as blue squares. 
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Figure S7: Zonally averaged surface temperature changes (LGM minus LH) from the 
best-fitting model (ECS2xC=2.4 K). Black: surface temperature (SST over the ocean 
corrected for sea level lowering by adding 0.3 K, and SAT over land) masked by the grid 
points that contain reconstructions. Red: unmasked surface temperature (SST over the 
ocean and SAT over land). Green: unmasked SAT. Blue unmasked SST. 
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Figure S8: Map of residuals (difference in temperature change between model and 
reconstructions, top) from the best fitting model (ECS2xC = 2.4 K) and residuals divided 
by the combined error σ=σO+σM, where σO is the published observation error shown in 
Figure S3 and σM is the estimated model error (6 K over land and 2 K over the ocean), 
which consists of the correlated error (3.5 K over land and 1.5 K over the ocean) and the 
nugget error (2.5 K over land and 0.5 K over the ocean). 
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Figure S9: Distributions of reconstructed (observed) and modeled LGM-modern 
temperature anomalies at selected climate sensitivities, for land and ocean (left), land 
only (center), and ocean only (right) grid cells. 
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Figure S10: Residuals at the posterior mean climate sensitivity (2.2 K) for land and ocean 
(upper left), land only (upper center), and ocean only (upper right) grid cells, with normal 
fits (dashed lines) superimposed.  Also shown are cumulative distribution functions of the 
residuals (lower left) and normal Q-Q plots (lower center) with linear fits between the 
first and third quartiles (dashed lines). 
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Figure S11: Plot of mean and 90% interval for the reconstructed temperature anomaly 
(solid and dashed red lines) and mean and 90% intervals for the modeled temperature 
anomaly as a function of ECS2xC for land and ocean (left, black), land only (center, 
green), and ocean only (right, blue) grid cells. 

 
Figure S12: As in Figure S11, but with grid cells in the North Atlantic region omitted. 
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Figure S13: Marginal and pairwise joint posterior distribution of estimated parameters 
(ECS2xC, land spatial error, and ocean spatial error), for the default analysis.  The 
marginal distributions are given on the diagonal (with priors given by dashed curves), 
with pairwise scatterplots of posterior samples given below the diagonal, and pairwise 
correlations above the diagonals.  All units are in K. 
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Figure S14: Marginal posterior probability distributions for ECS2xC estimated in each 
sensitivity experiment (colored curves) compared to the distribution obtained in the 
default analysis (thin black curve), sorted by increasing mean ECS2xC. 
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Figure S15: Mean and median (filled and open circles) ECS2xC values, along with 66% 
and 90% intervals (thick and thin lines) for the various sensitivity experiments (as in 
Figure S14), sorted by decreasing mean ECS2xC.  The vertical dotted lines are the IPCC 
range of 2–4.5 K. 
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Figure S16: Simulation of dominant vegetation type for the present day (top) and the 
LGM (bottom) in model ECS2xC = 2.6 K. Five different plant functional types are 
simulated: broadleaf trees (green), needleleaf trees (blue), C3 grass (brown), C4 grass 
(orange), and shrub (light green) in addition to bare soil (yellow). 
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